
4 CROSSTALK The Journal of Defense Software Engineering April 2003

More than half of large systems-devel-
opment projects fail, and of those

that succeed, very few are delivered on
schedule [1]. The situation is so bad that
nontechnical executives often ask, “How
does a project get to be one year late?”
Years ago, Fred Brooks gave the astute
answer, “One day at a time” [2].

Astute as it was, Brook’s answer was
not too helpful for those trying to teach
nontechnical executives how to avoid
these hyper-extended projects – or at least
to see them coming. What exactly happens
on those days where the project falls
behind? Watching the progress of the war
in Afghanistan, I finally realized how to
explain this dynamic so everyone could
understand.

In modern warfare, the first step in
hostilities is to destroy the enemy’s com-
munication and control system, after
which they can be easily defeated because
of their confusion and inability to coordi-
nate their forces. This is exactly the strate-
gy that seems to be taking place when the
development organization destroys its
management’s ability to control the organ-
ization. It may or may not be intentional.
It may not happen all at once. But one day
at a time, one small step at a time, the net
effect is the same as a carefully planned
and executed war – destroying the manag-
er’s ability to manage successful projects.

The war in this case is a war against
nature, including human nature. A software
product is, in essence, composed of mil-
lions, or tens or hundreds of millions of
tiny parts. Each of those parts must be
built correctly, but that is not enough.
Building the product consists of putting
those correctly built parts together in the
proper sequence. If we consider each part
as analogous to a military target, the
desired product is a large set of targets.
When all the targets have been hit, in the
proper sequence, the war is won and the
product is built successfully.

But by nature, human beings are not

well equipped for such precision work.
Errors (missed targets) occur in every
product development. Unless a project is
well managed, the war is never won, and
the product is never finished or is fin-
ished poorly.

Why would a project be managed
badly? It is an application of the first law of
bad management: “If what you’re doing isn’t
working, do more of it” [3]. I used to

wonder how managers could be so stupid
as to continue doing things that were not
working. After watching many software
development wars, I realized that it is not
a matter of stupidity. As their communica-
tion and control system is destroyed, man-
agers simply do not know that what they are
doing is not working. They do not know
that essential targets are being missed.

Suppose you were a military general
directing air strikes by using video cameras
to show the target area. Suppose those
cameras were not actually showing the tar-
get area, but recorded scenes from some
other area. You would continue bombing,
thinking you were hitting targets until the
enemy mustered a surprise attack with
forces you thought had been eliminated.

Managers whose communication and
control systems have been corrupted usu-
ally do not know anything is wrong until
the delivery date arrives. The delivered
code is not complete, and what is com-
plete is full of errors that have not been

eliminated. If the communication and
control system has not been destroyed but
instead rigged to fool them, they may not
even know that they do not really have the
product they expected to have. In the fol-
lowing sections, I will cover five general
categories of communication and control
disruption:
• Destroying information.
• Destroying information infrastructure.
• Hiding information.
• Degrading the believability of infor-

mation.
• Inserting misleading information.

Let me emphasize that these disrup-
tions do not have to be intentional,
although they might be. People with the
very best intentions, even the managers
themselves, may do each of them. That is
because people are not perfect data
recorders. They are influenced by stress,
by pressure, by what they think will hap-
pen to themselves or other people, and by
just plain mistakes. Only in the smallest of
projects can a manager rely solely on per-
sonal reports by individuals, no matter
how well intentioned they may be.

Instead, as projects grow larger, man-
agers must create and guard communica-
tion and control systems that protect
against disruption by individual error;
these systems must in turn be protected
from disruption. I will illustrate such dis-
ruptions by examining typical mistakes
when using the following principal tools
that managers require for communication
and control:
• Requirements will be used to illustrate

destroying information.
• Configuration management will be

used to illustrate destroying of infor-
mation infrastructure.

• Technical reviews, project manage-
ment reviews, and quality assurance
will be used to illustrate hiding infor-
mation.

• Testing will be used to illustrate
degrading the believability of informa-
tion.

• Demonstrations and risk management

Destroying Communication and Control in
Software Development©

Dr. Gerald M. Weinberg
Weinberg & Weinberg

More than half of large systems-development projects fail, either intentionally or not, because people destroy communication
and control within the organization. This article explains how this occurs when using basic tools, including requirements, con-
figuration management, testing, and more. Fortunately, as the author reveals the methods used to sabotage these tools, he also
advises project managers on where and when to intervene with countermeasures.

© 2002 Gerald M. Weinberg. All Rights Reserved.

The People Variable

“As their
communication

and control system is
destroyed, managers

simply do not know that
what they are doing is

not working.”

Destroying Communication and Control in Software Development

April 2003 www.stsc.hill.af.mil 5

processes will be used to illustrate
inserting misleading information.
Of course, the mistakes are not limit-

ed to the following examples, and each
type of mistake can be found in each com-
munication and control tool.

Destroying Information
In software systems, the product is invisi-
ble unless special efforts are made to ren-
der it visible. To take a simple example, an
individual programmer might make 50
test-runs but never record that fact, or tell
anybody. He might find a dozen faults
with his code that he does not fix and
never mentions. Pair programming (as in
eXtreme programming) is one way to pre-
vent this kind of information destruction,
but not if both members of the pair col-
laborate in the destruction.

In project reviews, we frequently see
another common form of information
destruction: the shading of figures. To
take a common example, a piece of work
on the critical path is a week behind; how-
ever, the project manager makes a slight
adjustment so that this delay will not raise an
issue with upper management. After all, he
or she reasons, everyone will just work a
little harder and catch up. Maybe they will,
and maybe they will not, but now the man-
ager is steering by a distorted video rather
than by a view of the actual battlefield.

Requirements
Because software is an invisible product,
The Zero Law of software engineering
states, “If you don’t have to meet quality
requirements, you can meet any other
objective” [4]. Thus, whenever there are
not clear requirements on quality, anybody
can say, “We’re doing just fine.” It is like
dropping bombs without a map of target
locations – all you can say is that you have
dropped a lot of bombs, not what effect it
is having on the enemy. So, without
defined requirements, so-called progress
reports are not reports of progress at all
but merely reports of effort expended –
the number of bombs dropped in the
dark, and the number of days working
with unknown results.

Without requirements, when the soft-
ware finally becomes executable and
something bad happens the developer can
say, “That is not a bug, it is a feature.”
(“That hospital we destroyed was a secret
enemy base.”) By preventing requirements
from being explicit, developers can thus
ruin any real information about quality.

But how is this done when everybody
knows the importance of requirements?
Early in a project when a manager tries to
obtain explicit requirements, he or she will

hear dozens of excuses, some of the most
common of which are these:
• “We know what is needed, so writing it

down will be a waste of time.”
• “It is too hard to get everyone to agree.

It just creates conflict.”
• “You cannot really know the require-

ments until you let the customer see it,
so we should not bother them.”

• “It will take a long time, and we have
to start the real work of coding, other-
wise we will not meet the schedule.”
Each such argument has some appeal

for the manager who does not want to
waste time, create conflict, bother cus-
tomers, or miss the schedule. However,
in accepting such arguments, the manag-
er self-destroys his or her ability to com-
municate and control. In doing so, he or
she ensures that time will be wasted, con-
flict will be rife, customers will be both-
ered, and the project will not meet its
schedule – exactly the opposite of the
intended effects.

So why do managers keep falling into
this self-destructive trap? I believe it is
because there is some truth to each argu-
ment: Requirements work, when done
badly, can waste time, engender conflict,
irritate customers, and delay a project. The
solution, though, is not to eliminate
requirements work and rush into coding,
but to create and support an effective
requirements process. There are a number
of ways to do this, and the manager must
not fall into the trap of indecision about
which one to use.

Choose a process for managing both
initial requirements and changes to
requirements. Train people or hire experi-
enced people to execute your process.
Above all, see that the process is actually
carried out. Only then can you have fact-
based communication and control.
Otherwise, you will be like an artillery
commander whose gunners report they
are never missing the intended target,
which is technically true because nobody
specified a target.

Destroying Information
Infrastructure
High-level managers can generally evalu-
ate the success of a requirements system
because they should be able to understand
the targets – those features and attributes
that their customers desire, at least the
nontechnical ones. But high-level man-
agers are generally not qualified to exam-
ine technical details and determine their
correctness. Even if qualified, certainly
they have no time for the job. Instead,
they must rely on indirect information
about quality beneath the requirements
level.

The principal management tools for
obtaining such information in an under-
standable form are personal reports from
the technical staff plus reports from qual-
ity assurance, technical reviews, and test-
ing. These are the radar detectors, recon-
naissance satellites, cryptographers, and
field reports in the war against error.
Anything that deranges or distorts person-
al reports, quality assurance, technical
reviews, or testing will destroy essential
communication and control information.

Underlying all these reporting systems
is the configuration management system
(CMS) that has the job of retaining all
essential project information: require-
ments, design, code, test plans, test data,
test results, review reports, project man-
agement information, architectural data,
and user documentation.

The CMS is designed to prevent phys-
ical destruction of information such as
altering of reports; unrecorded changes to
requirements, code, or tracking data; unau-
thorized entries in data fields; or physical
failure of media. Without a functioning
CMS, the manager cannot rely on the
accuracy of any information. However,
the CMS is easily undermined in numer-
ous ways that illustrate the destruction of
the information infrastructure.

The CMS
Perhaps the most common way to destroy
a CMS is by passive behavior. People do
not object directly to the system, but they
fail to use it or fail to use it correctly in
ways that might be attributed to innocent
misunderstandings.

For instance, items that are supposed
to be placed in the CMS are not found
there. When someone asks the responsible
people, they might say, “Oh, we did not
know you needed that in draft form. We
still have some unresolved issues, so we
thought we would wait until it was perfect
before we put it in.” It is difficult for a
manager to fault people who merely say

“By preventing
requirements from

being explicit, developers
can thus ruin

any real information
about quality.”

The People Variable

6 CROSSTALK The Journal of Defense Software Engineering April 2003

they are trying to do a good job.
To take another example, consider the

bug-tracking database, which is part of the
CMS that is supposed to report each error
found in testing. Each error report
remains open until the error is tracked
down and repaired. Successful managers
rely on statistics from the bug-tracking
database to monitor project progress and
decide about product release. Statistics are
varied, but include the types of errors
detected, the rate of finding and removing
errors, and detection of error-prone parts
of the product.

Such statistical information, however,
loses its usefulness if errors and their han-
dling are reported accurately, but passive
corruption of this database takes place
such as these many forms:
• Developers remove error reports

claiming that they are not really errors,
giving specious reasons like “that par-
ticular build wasn’t done correctly,”
which is another interesting fact in and
of itself.

• Managers remove error reports
claiming, “We are not supposed to be
testing that yet,” which gives their
managers an overly optimistic sense
of progress.

• Testers file incomplete error reports,
omitting such valuable information as
the original cause of an error, which
would help management detect those
areas that need additional support or
training.
The CMS obtains its value by making

information available to all who might
need it, while protecting information from
corruption by those who have no authori-
ty to change it. Because of its protection
function, the CMS must have the ability to
restrict access. When that restriction is
applied to reading the information, howev-
er, the whole purpose of the CMS is
undermined.

In complex projects, you never know
who needs to know what. For a develop-
ment organization to be successful, infor-
mation must flow freely. But managers
may become territorial and say that certain
data “is relevant to our group only.” They
may request that the CMS restrict access
to these data, and upper management may
mistakenly support them.

Why would upper management make
such a grave mistake? Perhaps they fear
that morale would drop if people knew
the true state of the group’s work.
Perhaps they are trying to protect the
group manager from blame. Maintaining
morale and keeping a blameless atmos-
phere are laudable goals, but if these
goals can be reached only by dismantling

the information infrastructure, the proj-
ect is a lost cause.

How do you protect your CMS? First
of all, understand that your CMS is not
just some technician’s tool, but a manage-
ment tool that underlies all communica-
tion and control. It belongs to you so
manage it, which means the CMS group
should report to upper management, not
to project management. Second, set and
enforce a policy of complete and open
information at all times and resist plausi-
ble sounding arguments for hiding infor-
mation that is in the CMS. Third, manage
your people well without blaming, because
blaming leads to the desire to hide infor-
mation from management [5].

Hiding Information
Projects certainly generate swarms of
data, and sometimes managers argue for
hiding that much data to protect workers

from excess complexity. These managers
restrict people’s access to the CMS for their
own good, but the side effects are ruinous.
More astute managers control complexity
by creating special functions to manage
the data, extracting useful information in
condensed form.

Typical of such functions are technical
reviews, project management reviews, and
quality assurance. Because their job is to
extract relevant information from moun-
tains of data, anything that hides data
from these functions also hides informa-
tion from management.

Technical Reviews
Technical reviews extract relevant data by
transforming technical detail into a non-
technical answer to the question: “Does
this work product do what it is supposed
to do?” Moreover, if the answer is no, the
technical review provides information
about what else needs to be done, and
what issues need to be resolved.

In other words, technical reviews are a
form of testing, with three major advantages:

• They can be applied to any work prod-
uct, not just code.

• They can be used much earlier in a
project to save dead ends.

• They can find types of errors that may
not be found by testing.
Without technical reviews, managers

are at the mercy of individual reports
from their technical staff. Unfortunately,
this is an ineffective source, for software
developers are notoriously unable to give
accurate assessments of their own work.
By the time (during testing) a manager dis-
covers that a developer was overly opti-
mistic, most of the damage has been done
and the costs and time are not recoverable.

Many developers (and testers and doc-
umenters) would rather not have manage-
ment know the true status of their work.
They figure that “if I just have a little
more time, and nobody bothers me, I’ll
get it all right.” And, sometimes, they are
correct. Unfortunately, a large project that
relies on such self-assessments will always
fail because some of these predictions will
invariably be wrong, and the managers will
not know which ones.

Project managers can be victims of the
same optimism, but technical reviews will
soon reveal the true state of their project
to their own managers, unless they can
somehow conceal the results. They may
try to convince their managers that “tech-
nical reviews are not really needed for this
particular part.” They may argue that the
product is too complex, or that it is too
simple. They may argue that reviews
would slow things down, or that their pro-
grammers are very good so nothing
important could go wrong. Or perhaps
they argue that the programmers would be
upset to have their work reviewed (and of
course we must not upset our developers,
even if it costs us our project).

If project managers fail to convince
their managers not to hold technical
reviews of a product candidate, they may
hold “reviews” that do not follow an
effective discipline. Or, they may hold
effective reviews, then fail to follow
through on addressing the issues raised.
When the review concerns a require-
ments document, the project managers
may order the developers to make the
revisions but continue designing and
coding from the old documents. Then
the code and the requirements become
so misaligned that the requirements can-
not be used for designing test cases
against the code. When bogus reviews are
done for appearances, not for impacting
the quality of the product, they are, as
claimed, a waste of time and destroy
morale. They also prejudice the organiza-

“... set and enforce a
policy of complete and
open information at all

times and resist plausible
sounding arguments for

hiding information that is
in the CMS.”

Destroying Communication and Control in Software Development

April 2003 www.stsc.hill.af.mil 7

tion against future technical reviews.
You can spot and prevent bogus

reviews principally through the institution
of a corps of professional review leaders
trained and experienced as facilitators of
the human processes involved [6]. As your
organization stabilizes, you can monitor
reviews with appropriate measurements
that will make bogus reviews stand out
from real ones [7].

Project Management Reviews
It is quite natural for complex projects to
drift off course. In order to steer them
back on course, managers conduct regular
project management reviews. These
reviews transform masses of data about
project status into information that can be
used by upper management to assess the
true state of projects and the rate of
progress. Without accurate information
high-level managers cannot design actions
that will bring projects back on target.

Project managers, however, often view
these project reviews as unnecessary inter-
ference with their authority. Privately they
will say, “I just want to do my project,
without interference from above.” To
them, well-run project management
reviews threaten to expose their imperfec-
tions, unless they can somehow manipu-
late the reviews to hide information,
rather than reveal it. They may carefully
script the reviews and rehearse them so
that none of the really important informa-
tion leaks through to their managers.

These misguided project managers will
hide information behind a slick presenta-
tion laden with lots of irrelevant data
expressed in techno babble. If forced to dis-
cuss risks, they will do whatever is neces-
sary to pooh-pooh them – a position that
is easier to support when upper manage-
ment responds to honest risk reporting by
emphasizing that risks are not acceptable.

To avoid this trap, watch out for
reviews that are run too smoothly. Insist
that your reviews use only documents and
files used in actual day-to-day work, not
those specially prepared for the meetings.
Between meetings, spot check to see if
what you are seeing are actual work prod-
ucts. Above all, monitor and compare pre-
dicted and actual accomplishments, where
accomplishments are strictly tested/
reviewed work products and not abstrac-
tions such as 45 percent complete, and are not
chunks too huge to see work products
from one review to the next.

Quality Assurance
The quality assurance function transforms
data into useful management information
by helping to establish processes and stan-

dards that, if followed, will assure quality,
and then by assuring that these processes
and standards are actually being followed.
By observing what people are actually
doing, quality assurance can provide early
warning of likely missed targets; even
before product candidates are available for
review or testing.

Obviously, quality assurance cannot do
its job if it cannot observe what people
are actually doing. One of the principal
ways of hiding information is to exclude
quality assurance people from various
working meetings. And, if those meetings
produce minutes, quality assurance people
are excluded from the distribution list.

Prevent these abuses by having quality
assurance report to the highest levels of
management, and not to project manage-
ment. Insist that minutes of all meetings
go in the CMS so you can check that such
minutes are available to quality assurance

for every meeting. And, if people start
asking you to exclude quality assurance
from meetings, that is the time to dig
under the rock to see what is hiding.

Degrading the Believability of
Information
Those managers and developers who want
to hide information on the true state of
their projects see quality assurance people
as an impediment. Because the quality
assurers’ job definition requires that they
be allowed to observe anything, simply
excluding them from meetings and min-
utes may prove difficult. A more effective
tactic may be to discredit the quality assur-
ers by saying they are disruptive, do not
know enough to understand what is being

done, are not team players, or are too neg-
ative. That way, reports from quality assur-
ance can be ignored, and eventually the
assurers can be excluded altogether from
meetings and access to information. If the
assurers then try to object to any practice,
they can be further discredited by saying,
“How would they know? They have not
participated in anything, and they have not
seen the real data.”

Of course, this style of defamation
can be used on anyone who speaks up: a
tester, an architect, a consultant, or a man-
ager from another area. “What could they
possibly know that we, the builders, do
not already know?” Once upper manage-
ment believes this falsehood, any report or
recommendation from such an outside
source can be safely ignored until it simply
disappears. Nobody will know the true
state of the project until it is far too late to
put it back on track.

Do not be put off by arguments that
the quality assurance people are disrup-
tive; if necessary, simply instruct them to
observe and report, and not try to say any-
thing in the meetings. Accusations such as
this will tend to disappear if you provide
skilled professional facilitators for trou-
blesome meetings. At the very least, you
will be able to believe their version of
what is actually happening in meetings you
cannot attend.

Testing
Testing is the best place to illustrate the
degradation of believability, because test-
ing gives the most solid information
about how bad a product really is. If
developers cannot discredit test results,
then all their mistakes are exposed to
management view.

The most fundamental tactic for dis-
crediting testers and the information they
provide is to blame them for carrying the
following messages:
• “Testers are always negative; don’t they

have something positive to say?”
• “If they were team players, they

wouldn’t focus so much on what’s
wrong, but would help make things
look good.”

• “Why don’t they try to understand why
those are not really errors? They’re not
developers, so they should listen to us.”
Managers who fall for these ridiculous

arguments succeed in cutting off their
most reliable (albeit late) source of real
information about hitting targets. The
tester’s job is to reveal missed targets;
management’s job is to protect them
from being abused for doing their job. So,
protect your testers; definitely do not
consider them some lower form of

“The tester’s job is to
reveal missed targets;

management’s job is to
protect them from being
abused for doing their

job ... train them
[testers] in accurate,

nonjudgmental
communication, so you

can trust what they
tell you.”

The People Variable

8 CROSSTALK The Journal of Defense Software Engineering April 2003

employee, like developer’s little helpers. If
necessary, train them in accurate, non-
judgmental communication, so you can
trust what they tell you.

Inserting Misleading
Information
In war, enemies often conduct misinforma-
tion campaigns, inserting incorrect infor-
mation in order to give a false impression
of the true battle situation. In war, this is
done intentionally, but in software proj-
ects, the misinformation does not have to
be intentional to destroy a project.

For example, when issues are raised in
testing or technical reviewing, reports to
management may show that these issues
have been assigned to individuals or
groups who are never actually given the
assignments. Or, when issues are classi-
fied according to severity, classifiers may
be pressured to downgrade each issue “so
we do not alarm management.”

Demonstrations
The classical case of misleading informa-
tion is the demonstration. Demonstra-
tions are not really part of the informa-
tion infrastructure because managers have
known for a long time that they are
almost always rigged to make a product
look much better than it actually is [8].
This may be great for sales, but woe to
any manager who believes a demonstra-
tion instead of data from reviews and
testing.

Demonstrations may be rigged in
numerous ways, including the following:
• Developers may add to the test system

to support a demonstration, and then
remove items because they were not
really ready for testing, let alone actual
use.

• A developer may run the demonstra-
tion to carefully avoid any feature or
combination of features and data that
do not work properly.

• Developers may emphasize showy fea-
tures for their gee-whiz effect, ignoring
essential features that are mundane,
but difficult to implement.

• Developers may avoid stressing the
demonstration by bypassing attributes
such as security, performance, and
error-recovery. Instead, they show a
few normal activities done under the
easiest of conditions.
Never be fooled by a demonstration

because they are not product demonstra-
tions but only a sales technique. If you
want a real demonstration, take the product
out of the hands of development and put
it in the hands of an acceptance test team.

Risk Management Process
Testing, though a solid source of data on
missed targets, often comes too late in a
project to permit effective management
action. A risk-management system
attempts to identify potential trouble
spots early while managers still have a
chance to thwart them. However,
because it is assessed early in the project,
risk information lacks the solid founda-
tion of testing and is all too easily used
to mislead rather than to lead.

Any software project is replete with
risks; the handling of risks is the true test
of management mettle. The best man-
agers, like the best generals, want to enter
their battles with risks fully laid out in
front of them and their troops. The best
armies have the courage to face risks
head on, as do the best development
staffs. But if generals lack confidence in
their troops’ courage, they will be tempt-
ed to mislead their troops about the exis-
tence and seriousness of risks.

This kind of distortion places the
troops in a position of always being sur-
prised when risks are realized and ill pre-
pared to deal with them. It also causes
troops to lose faith in the wisdom of
their leaders, and to believe that their
leaders think poorly of them.

With an open, explicit risk manage-
ment process, a manager can minimize
risk distortion, optimize the handling of
risks that do occur, and bolster the con-
fidence of their staff.

Conclusions
Managing software projects, like fighting
battles, is a challenging business, but it
becomes well nigh impossible without
high-quality information. Consequently,
the first job of a successful software
manager is to ensure the quality of the
information needed for communication
and control – to protect this information
from error, loss, and distortion regard-
less of the source. Most of all, the gen-
eral has to protect troops from blame for
communicating information, regardless
of how unwanted that information
might be.◆

References
1. Jones, C. Software Systems Failure

and Success. Boston, MA: Inter-
national Thomson Computer Press,
1996: 4-5.

2. Brooks, Fred P. The Mythical Man-
Month. Reading, MA: Addison-
Wesley, 1982: 153.

3. Weinberg, G. M. Quality Software
Management: Volume 1 Systems
Thinking. New York: Dorset House,

1991: 62.
4. Weinberg, G. M. Quality Software

Management: Volume 2 First-Order
Measurement. New York: Dorset
House, 1992: 295.

5. McLendon, J., and G. M. Weinberg.
“The Blaming Organization.” IEEE
Software 1998.

6. Freedman, D. P., and G. M. Weinberg.
Handbook of Walk-Throughs, In-
spections, and Technical Reviews. 3rd
ed. New York: Dorset House
Publishing, 1990.

7. Humphrey, Watts. S. Managing the
Software Process. Reading, MA:
Addison-Wesley, 1989.

8. Weinberg, G. M. “How to Automate
Demonstrations.” Datamation Vol. 8
(1962): 40-42.

About the Author

Gerald M. Weinberg,
Ph.D., is a principal in
the consulting and
training firm Weinberg
& Weinberg. For more
than 45 years, he has

worked on transforming software
organizations. Weinberg is author and
co-author of more than 40 books,
including “The Psychology of
Computer Programming,” and “An
Introduction to General Systems
Thinking.” His books cover all phases
of the software life cycle, including
“Exploring Requirements,” “Rethinking
Systems Analysis and Design,” “The
Handbook of Walkthroughs,” “Inspec-
tions and Technical Reviews,” “General
Principles of System Design,” and “The
Roundtable on Project Management.”
His books on leadership include
“Becoming a Technical Leader,” “The
Secrets of Consulting,” “More Secrets
of Consulting: The Consultant’s Tool
Kit,” “The Roundtable on Technical
Leadership,” and “Quality Software
Management,” a four-volume series.
Weinberg is also known for his confer-
ences for software leaders, including the
“Amplifying Your Effectiveness
Conference.”

Weinberg & Weinberg
10131 Coors Road N.W.
Suite I-2
Albuquerque, NM 87114
Phone: (505) 897-9707
E-mail: hardpretzel@earthlink.net

