
120 Computer

I saac Newton would have been a
failure as an agile programmer.
Instead of sharing his work, New-
ton rarely communicated with
other workers and hid his results

from them for fear they would steal his
work. Instead of collaborating, he
quarreled with coworkers, particularly
Robert Hooke and Gottfried Leibniz,
over credit for his discoveries (James
Gleick, Isaac Newton, Pantheon,
2003).

Newton’s vendetta against Leibniz
did not stop at taking credit for invent-
ing calculus—it verged on character
assassination. Embodying the antithe-
sis of the people-oriented program-
ming style, Newton would certainly
disrupt any agile programming team.
Yet his accomplishments should make
any programming manager think twice
about not using a person of his skills.

Thomas Aquinas also would have
failed as an agile programmer. His per-
petual silence earned him the nickname,
“Dumb Ox.” A fellow student assumed
that Aquinas refrained from participat-
ing in class discussions because he
did not understand the material. This
well-meaning student offered to tutor
Aquinas. Things went smoothly until
the student came to a question he
didn’t know the answer to—and found
to his surprise that Aquinas did.

In a programming group, Aquinas
would probably be the proverbial pro-
grammer who sits silently and walks

through his code all day. Like
Aquinas’s fellow student, the other
programmers would assume that a
lack of ability led to his nonparticipa-
tion in group discussions. Thus,
Aquinas would be given unimportant
tasks and ignored.

A software development methodol-
ogy should take advantage of pro-
grammers’ strengths and avoid their
weaknesses. It seems that agile meth-
ods would do exactly the opposite for
the greatest mathematician of the
Enlightenment and the greatest logician
of the Middle Ages. This inability to
adapt to the working styles of Newton
and Aquinas should raise doubts about
the efficacy of agile methods.

WHAT ARE AGILE METHODS?
Currently, many different agile

methodologies have become popular.
However, all advocate the same basic
principles:

• Individuals and interactions over
processes and tools. To implement
this principle, the organization

moves programmers out of their
offices and cubicles into open-
floorplan offices. This minimizes
privacy so that programmers can
see and hear what everyone else is
doing.

• Working software over compre-
hensive documentation. The pro-
ject leadership discourages pro-
grammers from writing documen-
tation and encourages them to
produce software instead.

• Customer collaboration over con-
tract negotiation. The developers
demonstrate the prototype soft-
ware to their customers with the

expectation that the customers
will provide them with useful
feedback.

• Responding to change over fol-
lowing a plan. The developers
immediately use the customer
feedback to guide development of
the project’s next phase.

Agile methods proponents claim
that these principles create the ideal
environment for developing software.
In the case of Isaac Newton, however,
a talented individual with the potential
to be the star of the team would most
likely fail.

This raises the question of whether
agile methods provide the best envi-
ronment for the best programmers. We
define best in this case to mean having
the most advanced problem-solving
skills. This is not how a proponent of
agile methods would define best, how-
ever, and that may be part of the prob-
lem—as the “Defining a ‘Competent’
Agile Programmer” sidebar describes.
If the designers ignore the need to solve

Do Agile Methods
Marginalize
Problem Solvers?
Victor Skowronski, Northrop Grumman

T H E P R O F E S S I O N

Continued on page 118

Agile methods could
create an environment
hostile to the best
programmers.

118 Computer

T h e P r o f e s s i o n

Preparation
Agile methods do encourage talking

to other team members and writing
test programs as part of the prepara-
tion phase. Eventually, however, a
problem solver will exhaust these
resources and need to go outside the
team for information. This is what
Newton did when he invented calcu-
lus. He read the works of Copernicus,
Galileo, Kepler, and Descartes. These
sources gave him information he could
not get by talking to his London con-
temporaries. Research of this sort is
essential when the problem’s scope
exceeds the team’s expertise.

Researching outside sources involves
reading, which is difficult in an agile
environment. The common space
increases communication, but it also
increases the noise level and makes
concentration difficult. Libraries are
quiet for a reason.

If our problem solver does manage
to overcome the distractions of an
open office, peer pressure can become
a factor. Agile methods emphasize the
production of working code. A prob-
lem solver who chooses to do research
stops producing code. The problem
solver could even prevent others from
producing code: Extreme program-
ming puts two programmers on the

problems as part of software develop-
ment, their methodology will not pro-
vide the proper environment for
problem solvers.

AGILE PROBLEM SOLVING
Psychologists have concluded that

problem solving involves the follow-
ing four phases:

• Preparation. During this phase,
the problem solver gathers infor-
mation about the problem and
might carry out experiments and
test possible solutions.

• Incubation. The problem solver
stops actively working on the
problem during this phase and lets
the brain continue working below
the conscious level.

• Illumination. This is less a phase
than the moment when the solu-
tion or the solution’s central idea
appears as a flash of insight.

• Verification. During this phase, the
flash of insight expands into a com-
plete solution, which the problem
solver tests against reality.

Comparing these problem-solving
phases with the principles of agile
methodology reveals several inconsis-
tencies.

same workstation and has them work
on the same piece of code. One team-
mate cannot code while the other does
research. By doing research online, the
problem solver could even tie up the
workstation needed for coding.

This lack of code production will
cause the rest of the team to resent the
problem solver. Agile methods empha-
size self-organizing teams, so the other
team members are likely to make their
impatience known. They will insist
that the problem solver start writing
code.

Worse, the problem solver cannot
counter that he is producing anything
that can be shown to a customer. A
casual observer will rarely understand
the insights the problem solver’s
research produces. Trying to present
his results could even antagonize the
customer, who is being told about a
problem when he wants to hear about
a solution. Management won’t like
this. They will want the problem solver
to work on something that can show
immediate results.

Incubation
The incubation phase will also be

difficult for problem solvers. After
spending so much time researching the
problem, the problem solver appears
to abandon work on it. This can be
confusing to anyone unfamiliar with
the problem-solving process. It might
also be seen as an opportunity to get
the problem solver started doing real
work, particularly coding.

Although problem solvers some-
times do other work during the incu-
bation phase, the nature of that work
must be such that it lets the problem
solvers unconsciously organize the
facts their research has uncovered.
An agile environment with lots of
oral communication and personal
interaction can be too distracting
for the incubation phase to work
properly.

Illumination and verification
The situation might improve in the

illumination and verification phases. If

Continued from page 120

Defining a “Competent” Agile Programmer

The paper “Empirical Findings in Agile Methods” (Proc. Extreme
Programming and Agile Methods; http://fc-md.umd.edu/mikli/Lindvall_agile_
universe_eworkshop.pdf) records a panel discussion that defined the character-
istics of a good agile programmer as follows: “Participants agreed that a certain
percentage of experienced people are needed for a successful Agile project. There
was some consensus that 25%-33% of the project personnel must be ‘compe-
tent and experienced.’” Competent in this context means that the programmer
possesses real-world experience in the technology domain, has built similar sys-
tems in the past, and has good people and communication skills.

The first two of these attributes really describe experience, not skills. The only
skills explicitly mentioned involve the last attribute, which addresses people
skills. This is remarkable in that the description does not mention any skill
that could be related to problem solving.

This quote also highlights a problem that can occur with agile methods’ empha-
sis on oral communication. Even a cursory analysis of a statement like the one
above is difficult, if not impossible, during the ordinary flow of conversation.

A programming methodology
should accommodate the work-
ing style of an organization’s best

programmers—and agile methods may
not. Agile methods could push people
who excel at problem solving into the
background, giving center stage to pro-
gramming team members who can talk
well but might lack the analytical skills
necessary to do the difficult design and
coding tasks.

The qualities and talents that make
someone a good problem solver may
not be as widespread as we would like,
however. With the software industry’s
expansion over the past few decades,
many programmers may now have
better people skills than analytical
skills. Agile methods might let these
people work in a way they find com-
fortable. If the application already has
a set of known solutions, applying
them could be all that is necessary.

Programmers with poorer analytical
skills could be better suited to this work
than highly skilled problem solvers
who might find such work boring. An
agile method could also be the best
choice for such a team because it lets
them use their superior communication
skills when they run into difficulties.

If an application has one or more
unsolved problem areas, however, agile
methods could be inappropriate. This
situation requires good problem solvers,
and people skills will be less relevant.
The method that lets the problem
solvers work in the way they find most
comfortable is the most appropriate. �

Victor Skowronski is a senior engineer
with Northrop Grumman Information
Technology. Contact him at victor.
skowronski@ngc.com.

October 2004 119

and forced him to retire to a secluded
family farm. Rather than being an
impediment, the absence of human
companionship freed Newton to think
about the problem of motion along
curves. This lack of distraction arguably
benefited his creative process more than
any amount of conversation with his
peers would have.

To the extent that problem solvers
concern themselves with things, they
become less concerned with people—a
focus shift that typically translates into
poorer people skills. A good problem
solver will not spend much time listen-
ing to opinion that lacks factual back-
ing, for example, even though this
damages the opinion holder’s ego.
Remember, a problem solver can spend
large amounts of apparently unpro-
ductive time without making any
attempt to explain or justify it to co-
workers.

For example, Thomas Aquinas’s life
as a Dominican monk let him ignore
many social distractions. On one occa-
sion he could not, however: His supe-
riors ordered him to accept an
invitation to a state dinner hosted by
the king of France. Aquinas spent most
of his time at the dinner deep in
thought, not talking to anyone. For
someone with a lesser intellect, such
behavior would have been considered
extremely rude and would have guar-
anteed that the person would never
receive another invitation to such an
event. Fortunately for Aquinas, his rep-
utation encouraged others to overlook
his behavior.

A good problem solver who lacks
people skills appears to be much less
competent in the eyes of agile methods
proponents, however. The problem
solver isn’t as sensitive to the unspoken
messages other group members send.
These people focus less on problems
and pick up on interpersonal messages
more readily. Ironically, because they
appear more in tune with the group,
these individuals appear more effective
in an agile environment even though
they lack advanced problem-solving
skills.

the problem solver can convince the
team that the solution really solves the
problem and that implementing it
immediately is the right thing to do, it
might be possible to get help from the
rest of the team during these phases.
However, if the team is not persuaded,
our problem solver must again go
through these phases alone, while the
team creates peer pressure to abandon
the solution and work on something
more to its liking.

Some could claim that teams of
problem solvers have replaced the indi-
vidual working in isolation. These
teams work in brainstorming sessions
in which they present ideas and get
immediate feedback from one another.
This feedback must be carefully con-
trolled, however, to keep ideas from
being killed prematurely.

Moreover, a brainstorming session
cannot replace the preparation phase.
If team members do not thoroughly
understand the problem, they won’t be
able to recognize an innovative solu-
tion when the problem solver presents
one to them. At best, the brainstorming
session provides a method for jump-
starting the illumination phase, rather
than a replacement for the entire
process.

THINGS VERSUS PEOPLE
Problem solvers tend to be con-

cerned with things, how they work,
why they don’t work, and how they
can work better. Since software engi-
neers must solve problems that are
more concerned with things than peo-
ple, generally a concern for things is an
advantage. Even when the problems
appear to be more about people, such
as a graphical user interface design, the
software engineers can best analyze
and solve them if they think of these
problems as involving things—cogni-
tive psychology, for example—rather
than people.

Too much contact with other people
can cause distractions that interfere
with this obsession with things. Isaac
Newton invented calculus when the
plague closed Cambridge University

Editor: Neville Holmes, School of
Computing, University of Tasmania;
neville.holmes@utas.edu.au.
Links to further material are at
www.comp.utas.edu.au/users/nholmes/
prfsn.

